《物理教学设计与案例分析》课程教学大纲

一、课程基本信息

英文名称	Study of Physics instructional design and case 课程代码		PHYE2007	
课程性质	专业选修课程	授课对象	物理学 (师范)	
学分	2 学分	学时	36 学时	
主讲教师	主讲教师 袁海泉		2021年6月	
指定教材	王建中 中学物理教学设计与案例研究 科学出版社. 2012. 6			

二、课程目标

(一) 总体目标:

《物理教学设计与案例分析》课程是物理学(师范)专业的一门专业课。本课程要使学生具有现代教学观念,初步掌握中学物理教学的一般规律和方法,形成基本的教学技能,为从事中学物理教学、研究,不断提高教学质量打好基础。

结合物理学科的特点以及物理学科的教学规律与学习规律,对物理教学设计的模式、过程要素、分析技术与方法等方面进行系统的论述,并提供了丰富的物理案例,进行了详细分析。此外,在分析不同物理课型的特点与教学要求的基础上,对如何进行各种物理课型的教学设计问题进行理论阐述与案例分析。希望通过教学设计的物理学科化探索,使读者能够真正学会如何进行物理学科的教学设计。

(二)课程目标:

课程目标 1: 掌握物理教学设计的一般过程与方法

课程目标 2: 学会教学目标的设计以及目标达成的评价设计

课程目标 3: 合理使用教学资源,优化教学设计.通过实践活动,体会物理教师的使命,提升教育情怀,培养学生的爱国热情,探索未知、追求真理、永攀高峰的责任感和使命感。

(三)课程目标与毕业要求、课程内容的对应关系

表 1: 课程目标与课程内容、毕业要求的对应关系表

毕业要求	指标点	课程目标	对应关系说明
毕业要求 4:教学能 力	4-3 合理利用教 学资源和方法设 计教学过程。	教学目标1	掌握物理教学设计的一般过 程与方法
		教学目标3	合理使用教学资源,优化教学 设计
	4-5 利用评价工 具,掌握多元评 价方法,多视角、 全过程评价学生 发展。	教学目标 2	学会教学目标的设计以及目 标达成的评价设计

三、教学内容

第1章 教学设计概论

- 1. 1 教学设计的含义
- 1. 2 教学设计的基本模式
- 1. 3 教学设计的发展趋势
- 第2章 科学教育视野中的物理教学与教师专业发展
- 2. 1科学教育的概念、内容与方法
- 2. 2 中学物理课程与教学
- 2. 3 21 世纪的教师资格能力与专家型教师培养
- 第3章 信息化教学环境与设计
- 3. 1 信息化教学环境
- 3. 2 信息技术与课程整合
- 3. 3 信息化教学设计
- 第4章 中学物理概念教学设计与案例研究
- 4. 1 中学物理概念体系
- 4. 2 中学物理概念教学的几种模式

- 4. 3 物理概念教学设计的理论基础与总体框架
- 第5章 中学物理规律教学设计与案例研究
- 5. 1 中学物理规律教学设计的理论基础
- 5. 2 中学物理规律教学设计的基本问题
- 5. 3 中学物理规律教学设计案例
- 第6章 中学物理实验教学设计与案例研究
- 6. 1 中学物理实验教学的理论分析
- 6. 2 中学物理实验与实验教学设计
- 6. 3 中学物理实验教学设计案例
- 第7章 中学物理习题教学设计与案例研究
- 7. 1 中学物理习题教学的理论基础
- 7. 2 中学物理习题教学的模式方法
- 7. 3 中学物理习题教学设计案例
- 第8章 中学物理复习教学设计与案例研究
- 8. 1 中学物理复习课的教学设计
- 8. 2 中学物理复习课教学的常用方法
- 8.3 中学物理复习课教学设计案例
- 第9章 信息化物理学习评价
- 9. 1信息化学习评价概述
- 9. 2 信息化学习评价在物理教学中的应用

四、学时分配

说明 1. 本课程授课一学期, 共 36 课时, 每周 2 课时. 在教学过程中应充分注意培养学生的教学能力。

说明 2. 课时分配表是一个典型方案,教学过程中,在保证教学要求、教学重点的前提下,结合实际情况可对内容和课时作适当调整。

表 2: 各章节的具体内容和学时分配表

章序号	章内容	学时数
1	教学设计概论	4

2	科学教育视野中的物理教学与教师专业发展	4
3	信息化教学环境与设计	4
4	中学物理概念教学设计与案例研究	4
5	信息化教学环境与设计	4
6	中学物理实验教学设计与案例研究	4
7	中学物理习题教学设计与案例研究	4
8	中学物理复习教学设计与案例研究	4
9	信息化物理学习评价	4
合计	36	

《物理教学设计与案例分析》拟分为9章,以典型物理课型为经(主干),以各种学习方式作纬,组成一个相对完整的逻辑体系。第1章着重概述物理课程教学设计基础知识;第2章在简介中学物理课程基础上,讨论中学物理教学设计的类型、内容、设计原则与一般步骤等基本问题;第3章至第7章是《物理教学设计与案例研究》的主要部分,用大量的案例,详细剖析五种基本教学课型(概念、规律、实验、习题与复习等)教学设计的特点、设计原则及设计步骤等理论与操作性问题;第8章首先概述物理教学评价的基本内容,然后着重介绍与分析物理教学设计评价的过程与技术;第9章是拓展部分,选取一些和物理教学设计相关的基础教学"热点"问题展开深入分析与探索。

五、教学进度

表 3: 教学进度表

周次	章节名称	内容提要	授课 时数	作业及要求	备注
1	第一章	教学设计概论	2		
2	第一章	教学设计概论	2		
3	第二章	科学教育视野中的物 理教学与教师专业发	2		

		展		
4	第二章	科学教育视野中的物 理教学与教师专业发 展	2	
5	第三章	中学物理概念教学设 计与案例研究	2	提交"密度"教学设计
6	第三章	中学物理概念教学设 计与案例研究	2	模拟教学(局部)
7	第四章	中学物理规律教学设 计与案例研究	2	提交 "动能定理"教学 设计
8	第四章	中学物理规律教学设 计与案例研究	2	模拟教学(局部)
9	第五章	信息化教学环境与设计	2	
10	第五章	信息化教学环境与设计	2	
11	第六章	中学物理实验教学设 计与案例研究	2	
12	第六章	中学物理实验教学设 计与案例研究	2	模拟教学(局部)
13	第七章	中学物理习题教学设 计与案例研究	2	
14	第七章	中学物理习题教学设 计与案例研究	2	模拟教学(局部)
15	第八章	中学物理复习教学设 计与案例研究	2	
16	第八章	中学物理复习教学设 计与案例研究	2	模拟教学(局部)
17	第九章	信息化物理学习评价	2	

18	第九章	信息化物理学习评价	2		
----	-----	-----------	---	--	--

六、教材及参考书目

教材: 王建中 中学物理教学设计与案例研究 科学出版社 参考书目:

- 1、潘苏东 物理案例教学论 安徽教育出版社
- 2、窦瑾 中学物理教学设计 东北师范大学出版社
 - 3、施良方 崔允漷 教学理论: 课堂教学的原理、策略与研究 华东师范大学出版社
- 4、孙枝莲 主著 中学物理教学设计与案例分析/教师教育系列教材·高等学校规划 教材 安徽大学出版社
 - 5、中学物理教材
 - 6、自编教学设计案例集

七、教学方法

讲授教学设计的基本理论与各种课型的教学设计过程,案例分析典型的物理概念、物理规律、物理实验、物理习题的教学设计,练习相关内容的教学设计。

八、考核方式及评定方法

(一) 课程考核与课程目标的对应关系

表 4: 课程考核与课程目标的对应关系表

课程目标	考核要点	考核方式
课程目标 1	相关教学内容	过程化考试+平时学习表现
课程目标 2	相关教学内容	过程化考试+平时学习表现
课程目标 3	相关教学内容	过程化考试+平时学习表现

(二)评定方法

1. 评定方法

过程化考试 4-5 次, 占 80%, 平时成绩 (作业、讨论等) 20%。

2. 课程目标的考核占比与达成度分析

表 5: 课程目标的考核占比与达成度分析表

考核占比课程目标	平时	过程化考试	总评达成度
课程目标1	50%	50%	
课程目标 2	30%	30%	按权重计算
课程目标 3	20%	20%	

(三)评分标准

	评分标准						
课程	90-100	80-89	70-79	60-69	<60		
目标	优	良	中	合格	不合格		
	A	В	С	D	F		
课程 目标 1	完全掌握该课程 的基础知识,准确 理解物理课程的 价值与功能,形成 了正确的学生观、 教学观、教材观。	掌握了该课程的基础知识,准确理解物理课程的价值与功能,形成了正确的学生观、教学观、教材观。	较好地掌握该课程的基础知识, 准确理解物理课程的价值与功能,形成了正确的学生观、教学观、教材观。	基本掌握该课程的 基础知识,准确理 解物理课程的价值 与功能,形成了正 确的学生观、教学 观、教材观。	没有掌握该课程 的基础知识,准确 理解物理课程的 价值与功能,形成 了正确的学生观、 教学观、教材观。		
课程目标 2	深刻体会物理课程理论体系,理解教材中的物理思想方法,如模型建构、分析与综合、推理类比等科学思维方法,能够应	体会了物理课程理 论体系,理解教材 中的物理思想方 法,如模型建构、 分析与综合、推理 类比等科学思维方 法,能够应用教材	较好地体会物理 课程理论体系, 理解教材中的物 理思想方法,如 模型建构、分析 与综合、推理类 比等科学思维方	基本体会物理课程 理论体系,理解教 材中的物理思想方 法,如模型建构、 分析与综合、推理 类比等科学思维方 法,能够应用教材	没有体会物理课程理论体系,理解教材中的物理思想方法,如模型建构、分析与综合、推理类比等科学思维方法,能够应		

	评分标准					
课程	90-100	80-89	70-79	60-69	<60	
目标	优	良	中	合格	不合格	
	A	В	С	D	F	
	用教材建构理论 分析、解决物理问 题。	建构理论分析、解 决物理问题。	法,能够应用教材建构理论分析、解决物理问题。	建构理论分析、解 决物理问题。	用教材建构理论 分析、解决物理问 题。	
课程 目标 3	完整形成了物理 学理论的基本框 架,学会各种类型 物理知识的教学 设计,学会解决物 理教学中的实际 问题。	较好地形成物理学 理论的基本框架, 学会各种类型物理 知识的教学设计, 学会解决物理教学 中的实际问题。	基本形成物理学 理论的基本框 架,学会各种类 型物理知识的教 学设计,学会解 决物理教学中的 实际问题。	初步形成物理学理 论的基本框架,学 会各种类型物理知 识的教学设计,学 会解决物理教学中 的实际问题。	没有形成物理学理论的基本框架,学会各种类型物理知识的教学设计,学会解决物理教学中的实际问题。	